martes, 24 de marzo de 2009

Equilibrio Hidroelectrico

Son numerosas las situaciones patológicas en la práctica diaria en las que ocurren desequilibrios hídricos, electrolíticos y ácido-básicos. Sus manifestaciones clínicas señalan la oportunidad para precisar su naturaleza e intensidad a través de estudios auxiliares que conducen a la toma de medidas valiosas para manejar con éxito estos problemas.

Casi la mitad del peso de un ser humano está constituido por agua que es el solvente corporal ideal. Está distribuida en dos grandes espacios, el intracelular y el extracelular. Este último, a su vez, se divide en dos compartimentos: el intersticial que baña las células y el intravascular que incluye los elementos figurados y el plasma. Existen además otros tres pequeños espacios: el primero es el agua contenida en el tejido conectivo, cartílago y tendones; el segundo es el agua unida a la matriz del hueso; y el tercero, conocido como transcelular, está compuesto por las secreciones digestivas, sudor, líquido cefalorraquídeo y fluidos pleural, sinovial e intraocular. Las células (espacio intracelular) y el intersticio (espacio intersticial) están separados por la membrana celular; el intersticio y la sangre (espacio intravascular), por la pared capilar.

El intercambio de substancias entre estos espacios es esencial para la vida. Nutrientes como el oxígeno o la glucosa son acarreados a las células por la sangre vía el líquido intersticial; productos de desecho del metabolismo celular, como el bióxido de carbono o la urea, difunden al espacio intersticial y son removidos por la sangre y excretados por el pulmón o el riñón. El objetivo de este texto es analizar el volumen y la composición de éstos espacios, los factores que determinan su distribución, las alteraciones que ocurren en los distintos estados patológicos y su tratamiento.

El principio fundamental sobre el equilibrio hidroelectrolítico es el siguiente: sólo puede mantenerse si la ingesta es igual a la pérdida. Como es lógico, si se elimina una mayor o menor cantidad de agua de la que entra, se producirá un desequilibrio. Si se produce esta situación, el volumen líquido total se incrementará o disminuirá, pero no permanecerá constante.
Los mecanismos cruciales para el mantenimiento del equilibrio hídrico, están formados por los dispositivos que pueden modificar la eliminación de líquido para que esta se ajuste a la ingesta, aunque también actúan los mecanismos que ajustan la ingesta a la eliminación.

Regulación de las pérdidas de agua y solutos.
Son dos factores los que, en conjunto, determinan el volumen urinario: la tasa de filtración glomerular y la tasa de reabsorción de agua por los túbulos renales. La tasa de filtración glomerular, excepto en condiciones anómalas, permanece constante, de modo que el volumen urinario no suele fluctuar. La tasa de reabsorción de agua, por el contrario, varía considerablemente. Debido a ello, la tasa de reabsorción tubular ajusta el volumen urinario a la ingesta de líquido en mayor medida que la tasa de filtración glomerular.
La cantidad de hormona antidiurética (ADH) y de aldosterona que se secretan regulan la cantidad de agua que es reabsorbida por los túbulos renales. O sea que el volumen urinario se regula sobre todo por las hormonas secretadas por el lóbulo posterior de la hipófisis (ADH) y por la corteza suprarrenal (aldosterona). La secreción de aldosterona está regulada a su vez por el sistema renina-angiotensina.
Aunque los cambios en el volumen de líquido eliminado a través de la piel, los pulmones y el intestino también afectan la proporción ingesta-eliminación de líquido, estos volúmenes no se ajustan automáticamente a la ingesta líquida, como sucede con el volumen urinario.
Las pérdidas de agua y solutos a través de la sudación y exhalación aumentan durante el ejercicio; sin embargo, los excesos de agua y solutos corporales se eliminan principalmente por la orina.
Bajo ciertas circunstancias, algunos otros factores, influyen en la pérdida urinaria de agua. Cualquier gran disminución en el volumen de la sangre se detecta en los barorreceptores (receptores de la presión) de la aurícula izquierda y de vasos sanguíneos, lo que también estimula la liberación de hormona antiduirética. En casos de deshidratación intensa, la velocidad de filtración glomerular disminuye a causa de la caída en la presión arterial, con lo que se reducen las pérdidas de líquidos en la orina. Al contrario, con el consumo de demasiada agua aumenta la presión arterial, se eleva la velocidad de filtración glomerular y las pérdidas hídricas en la orina son mayores. Con la hiperventilación aumentan las pérdidas de líquido mediante la exhalación de más vapor de agua. También el vómito y la diarrea ocasionan pérdidas de agua del conducto gastrointestinal. Por último, con la fiebre, el sudor intenso y la destrucción de extensas áreas de piel por quemaduras se produce eliminación excesiva de agua a través de la piel.

Factores que alteran la pérdida de líquidos en condiciones anormales
La frecuencia respiratoria y la cantidad de sudor pueden afectar en gran medida la eliminación de líquidos si existen determinadas situaciones anómalas. Por ejemplo, un paciente que está hiperventilando durante mucho tiempo pierde gran cantidad de agua a través del aire que espira. Si, como sucede con frecuencia, el paciente ingiere además poca agua por vía oral, la eliminación de líquido excede la ingesta y se produce un desequilibrio líquido denominado deshidratación (es decir, un descenso en la cantidad de agua corporal total). En otras situaciones anormales, también se produce una excesiva eliminación de líquidos y electrolitos, que excede a la ingesta, con lo que se llega al desequilibrio hidroelectrolítico.

Regulación de la ingesta o ganancia de líquidos
Los fisiólogos no coinciden sobre los detalles del mecanismo que controla la ingesta de líquidos y que hace que esta aumente cuando aumenta la eliminación y disminuye cuando lo hace esta última.
La ganancia de agua se regula principalmente mediante ajustes del volumen de agua ingerida. El hipotálamo tiene un área conocida como centro de la sed, que regula la necesidad de beber.
Cuando la pérdida de agua es mayor que la ganancia, la deshidratación (una disminución del volumen y un aumento en la osmolaridad de los líquidos corporales) estimula la sed. Se dice que la deshidratación es leve cuando la masa corporal disminuye en 2 % a causa de pérdida de líquidos.

La reducción del volumen de sangre ocasiona que baje la presión arterial. Este cambio estimula a los riñones que liberan renina, lo cual promueve la formación de angiotensina II, la que estimula el centro de la sed en el hipotálamo. Otras señales que la provocan son las que se originan en las neuronas de la boca, las cuales detectan sequedad debido al menor flujo de saliva y las señales que generan los barorreceptores debido a la presión reducida en el corazón y vasos sanguíneos. Con todo esto aumenta la sensación de sed, lo que normalmente promueve mayor consumo de líquidos, con lo que se restaura su volumen normal.
Hay veces que la sensación de sed no se produce con la suficiente rapidez o el acceso al agua está restringido, con lo cual ocurre una deshidratación importante. Este problema se observa con mayor frecuencia en ancianos, lactantes y quienes sufren alteraciones mentales.
Cuando hay pérdida de líquidos por sudación intensa, diarrea o vómito, es conveniente iniciar el reemplazo de líquidos corporales mediante consumo de agua, aún antes de que se sienta sed.
Si una persona no ingiere nada durante días, no es posible mantener el equilibrio hídrico, a pesar de todos lo esfuerzos de los mecanismos homeostáticos para compensar la ingesta nula. En esta situación, la única solución para mantener el equilibrio sería que la eliminación también disminuyese hasta cero, pero esto no es posible, debe haber necesariamente algo de eliminación. ¿Por qué? Porque mientras que continúe la respiración, siempre se elimina algo de agua a través del aire espirado, al igual que, mientras que haya vida, se elimina una mínima e irreductible cantidad de agua a través de la piel.
Normalmente, los LIC e intersticial tienen la misma osmolaridad, de modo que las células no se encogen ni se hinchan, pero una variación en su osmolaridad puede causar desequilibrio de líquidos entre estos compartimentos. La elevación de la osmolaridad del líquido intersticial ocasiona que el agua salga de las células, que se encogen ligeramente; en cambio, cuando disminuye, las células se hinchan. Casi siempre, las modificaciones en la osmolaridad se deben cambios en la concentración de Na+ . Por lo regular, su descenso en el líquido intersticial inhibe la secreción de hormona antidiurética. Entonces, si funcionan normalmente, los riñones excretan los excesos de agua en la orina, lo cual incrementa la presión osmótica de los líquidos corporales hasta su nivel normal. Por tanto, las células del cuerpo sólo se hinchan ligeramente y sólo por un tiempo breve. Pero, cuando una persona persiste en consumir agua con una rapidez mayor a la que sus riñones pueden excretarla (la velocidad máxima de flujo urinario es de aproximadamente 15 ml/min) o cuando su función renal es deficiente, podrá padecer intoxicación por agua, un estado en el que el agua corporal excesiva ocasiona que las células se vuelvan hipotónicas y se hinchen de manera peligrosa. Cuando hay pérdida de agua corporal y Na+ por hemorragia, sudor excesivo, vómito o diarrea y se reemplaza la perdida con agua pura, los líquidos corporales se diluyen más. Esto puede ocasionar que la concentración de sodio plasmática, y por lo tanto, del líquido intersticial, disminuyan por debajo de los límites normales (hiponatremia). Al reducirse el nivel de este ión en el líquido interticial también desciende la osmolaridad de este, lo que ocasionará desplazamiento osmótico de agua hacia el líquido intracelular.
Cuando el agua entra a las células las vuelve hipotónicas y hace que se hinchen, con lo que ocasiona convulsiones, coma y a veces la muerte.